6,166 research outputs found

    Which way do I go? Neural activation in response to feedback and spatial processing in a virtual T-maze

    No full text
    In 2 human event-related brain potential (ERP) experiments, we examined the feedback error-related negativity (fERN), an ERP component associated with reward processing by the midbrain dopamine system, and the N170, an ERP component thought to be generated by the medial temporal lobe (MTL), to investigate the contributions of these neural systems toward learning to find rewards in a "virtual T-maze" environment. We found that feedback indicating the absence versus presence of a reward differentially modulated fERN amplitude, but only when the outcome was not predicted by an earlier stimulus. By contrast, when a cue predicted the reward outcome, then the predictive cue (and not the feedback) differentially modulated fERN amplitude. We further found that the spatial location of the feedback stimuli elicited a large N170 at electrode sites sensitive to right MTL activation and that the latency of this component was sensitive to the spatial location of the reward, occurring slightly earlier for rewards following a right versus left turn in the maze. Taken together, these results confirm a fundamental prediction of a dopamine theory of the fERN and suggest that the dopamine and MTL systems may interact in navigational learning tasks

    Predictive information and error processing : the role of medial-frontal cortex during motor control

    No full text
    We have recently provided evidence that an error-related negativity (ERN), an ERP component generated within medial-frontal cortex, is elicited by errors made during the performance of a continuous tracking task (O.E. Krigolson & C.B. Holroyd, 2006). In the present study we conducted two experiments to investigate the ability of the medial-frontal error system to evaluate predictive error information. In two experiments participants used a joystick to perform a computer-based continuous tracking task in which some tracking errors were inevitable. In both experiments, half of these errors were preceded by a predictive cue. The results of both experiments indicated that an ERN-like waveform was elicited by tracking errors. Furthermore, in both experiments the predicted error waveforms had an earlier peak latency than the unpredicted error waveforms. These results demonstrate that the medial-frontal error system can evaluate predictive error information

    Reward positivity elicited by predictive cues

    No full text
    A recent theory holds that a component of the human event-related brain potential called the reward positivity reflects a reward prediction error signal. We investigated this idea in gambling-like task in which, on each trial, a visual stimulus predicted a subsequent rewarding or nonrewarding outcome with 80% probability. Consistent with earlier results, we found that the reward positivity was larger to unexpected than to expected outcomes. In addition, we found that the predictive cues also elicited a reward positivity, as proposed by the theory. These results indicate that the reward positivity reflects the initial assessment of whether a trial will end in success or failure and the reappraisal of that information once the outcome actually occurs. NeuroReport 22:249-252 (C) 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Power analysis for detecting trends in juvenile spotted seatrout abundance in Florida Bay

    Get PDF
    The spotted seatrout (Cynoscion nebulosus) is considered a key species relative to the implementation of the Comprehensive Everglades Restoration Plan (CERP). One of the goals of the CERP is to increase freshwater flows to Florida Bay. Increased freshwater flows can have potential positive and negative impacts on spotted seatrout populations. At low salinities, the planktonic eggs of spotted seatrout sink to the bottom and are not viable (Alshuth and Gilmore, 1994; Holt and Holt, 2002). On the other hand, increased freshwater flows can alleviate hypersaline conditions that could result in an expansion of the distribution of the early life stages of spotted seatrout (Thayer et al., 1999; Florida Department of Environmental Protection1). Thus it would be useful to develop a monitoring program that can detect changes in seatrout abundance on time scales short enough to be useful to resource managers. The NOAA Center for Coastal Fisheries and Habitat Research (NOAA) has made sporadic collections of juvenile seatrout using otter trawls since 1984 (see Powell et al, 2004). The results suggest that it might be useful to sample for seatrout in as many as eight different areas or basins (Figure 1): Bradley Key, Sandy Key, Johnson Key, Palm Key, Snake Bight, Central, Whipray and Crocodile Dragover. Unfortunately, logistical constraints are likely to limit the number of tows to about 40 per month over a period of six months each year. Inasmuch as few seatrout are caught in any given tow and the proportion of tows with zero seatrout is often high, it is important to determine how best to allocate this limited sampling effort among the various basins so that any trends in abundance may be detected with sufficient statistical confidence. (PDF contains 16 pages

    Analytical study of the optimum geometric configuration of a space shuttle materials laboratory

    Get PDF
    A steady state, collisionless flow analysis was made of the density distribution within a hemisphere-disc system due to independent, uniformly distributed internal gas sources. The model was used to estimate the density within a molecular shield, deployed from the shuttle orbiter, which contained internal experiments having a prescribed gas source. Contour plots of the density distribution within the system were presented for disc-to-hemisphere radius ratios of .1, .3, .5, .7, and for disc-to-hemisphere surface emission flux density ratios of .01, 1, 100. The hemisphere-disc system was compared to the empty hemisphere, and it was found that if the disc emission flux density was the same as the hemisphere and the disc radius was not greater than 1/3 of the hemisphere radius, the increase in density at the center of the hemisphere-disc system was less than 50%
    corecore